Use of spray-cooling technology for development of microencapsulated capsicum oleoresin for the growing pig as an alternative to in-feed antibiotics: a study of release using in vitro models.
نویسندگان
چکیده
The aim of this study was to develop sustained release microspheres of capsicum oleoresin as an alternative to in-feed additives. Two spray-cooling technologies, a fluidized air bed using a spray nozzle system and a vibrating nozzle system placed on top of a cooling tower, were used to microencapsulate 20% of capsicum oleoresin in a hydrogenated, rapeseed oil matrix. Microencapsulation was intended to reduce the irritating effect of capsicum oleoresin and to control its release kinetics during consumption by the animal. Particles produced by the fluidized air bed process (batch F1) ranged from 180 to 1,000 microm in size. The impact of particle size on release of capsaicin, the main active compound of capsicum oleoresin, was studied after sieving batch F1 to obtain 4 formulations: F1a (180 to 250 microm), F1b (250 to 500 microm), F1c (500 to 710 microm), and F1d (710 to 1,000 microm). The vibrating nozzle system can produce a monodispersive particle size distribution. In this study, particles of 500 to 710 microm were made (batch F2). The release kinetics of the formulations was estimated in a flow-through cell dissolution apparatus (CFC). The time to achieve a 90% dissolution value (T90%) of capsaicin for subbatches of F1 increased with the increase in particle size (P < 0.05), with the greatest value of 165.5 +/- 13.2 min for F1d. The kinetics of dissolution of F2 was slower than all F1 subbatches, with a T90% of 422.7 +/- 30.0 min. Nevertheless, because CFC systems are ill suited for experiments with solid feed and thus limit their predictive values, follow-up studies were performed on F1c and F2 using an in vitro dynamic model that simulated more closely the digestive environment. For both formulations a lower quantity of capsaicin dialyzed was recorded under fed condition vs. fasting condition with 46.9% +/- 1.0 vs. 74.7% +/- 2.7 for F1c and 32.4% +/- 1.4 vs. 44.2% +/- 2.6 for F2, respectively. This suggests a possible interaction between capsaicin and the feed matrix. Moreover, 40.4 +/- 3.9% of the total capsaicin intake in F2 form was dialyzed after 8 h of digestion when feed had been granulated vs. 32.4 +/- 1.4% when feed had not been granulated, which suggests that the feed granulation process could lead to a partial degradation of the microspheres and to a limitation of the sustained release effect. This study demonstrates the potential and the limitations of spray-cooling technology to encapsulate feed additives.
منابع مشابه
Development and Characterization of Bioadhesive Gel of Microencapsulated Metronidazole for Vaginal Use
The present study concerned with the development and characterization of metronidazole microcapsules prepared by thermal change method using different ratios (1:1, 1:2 and 1:4) of ethyl cellulose in order to select the best microcapsule formulation with a good encapsulation efficiency and drug release profile. The obtained microcapsules were discrete, spherical with free flowing properties and ...
متن کاملDevelopment and Characterization of Bioadhesive Gel of Microencapsulated Metronidazole for Vaginal Use
The present study concerned with the development and characterization of metronidazole microcapsules prepared by thermal change method using different ratios (1:1, 1:2 and 1:4) of ethyl cellulose in order to select the best microcapsule formulation with a good encapsulation efficiency and drug release profile. The obtained microcapsules were discrete, spherical with free flowing properties and ...
متن کاملPreparation and In-vitro Evaluation of Rifampin-loaded Mesoporous Silica Nanoaggregates by an Experimental Design
The goal of this research is preparation, optimization and in-vitro evaluation of rifampin-loaded silica nanaoparticles in order to use in pulmonary drug delivery. Nanoparticles are exhaled because of thier small size, Preparation of nanoaggregates in micron-sized scale and re-disrpersion of them after the deposition in the lung is one approach in order to overcome this problem, which we used i...
متن کاملPreparation and In-vitro Evaluation of Rifampin-loaded Mesoporous Silica Nanoaggregates by an Experimental Design
The goal of this research is preparation, optimization and in-vitro evaluation of rifampin-loaded silica nanaoparticles in order to use in pulmonary drug delivery. Nanoparticles are exhaled because of thier small size, Preparation of nanoaggregates in micron-sized scale and re-disrpersion of them after the deposition in the lung is one approach in order to overcome this problem, which we used i...
متن کاملAntibacterial loaded Spray Dried Chitosan Polyelectrolyte Complexes as Dry Powder Aerosol for the Treatment of Lung Infections
Inhalation delivery of aerosolized antibacterials is preferred over conventional methods of delivery for targeting lung infection. The present study is concerned with the development and characterization of a novel, spray dried, aerosolized, chitosan polyelectrolyte complex (PEC) based microparticles containing antibacterials for the treatment of lung infections.Chitosan polyelectrolyte complex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of animal science
دوره 85 10 شماره
صفحات -
تاریخ انتشار 2007